Chapter 7 One-Dimensional Search Methods

An Introduction to Optimization

Spring, 2014

Wei-Ta Chu

Golden Section Search

- Determine the minimizer of a function f : R → R over a closed interval, say [a₀, b₀]. The only assumption is that the objective function is *unimodal*, which means that it has only one local minimizer.
- The method is based on evaluating the objective function at different points in the interval. We choose these points in such a way that an approximation to the minimizer may be achieved in as few evaluations as possible.
- Narrow the range progressively until the minimizer is "boxed in" with sufficient accuracy.

• We have to evaluate *f* at two intermediate points. We choose the intermediate points in such a way that the reduction in the range is symmetric.

$$a_1 - a_0 = b_0 - b_1 = \rho(b_0 - a_0) \qquad \rho < \frac{1}{2}$$

3

If f(a₁) < f(b₁), then the minimizer must lie in the range [a₀, b₁]
If f(a₁) ≥ f(b₁), then the minimizer is located in the range [a₁, b₀]

• We would like to minimize the number of objective function evaluations.

Golden Section Search

• Suppose $f(a_1) < f(b_1)$. Then, we know that $x^* \in [a_0, b_1]$. Because a_1 is already in the uncertainty interval and $f(a_1)$ is already known, we can make a_1 coincide with b_2 . Thus, only one new evaluation of f at a_2 would be necessary.

Golden Section Search

• Without loss of generality, imagine that the original range $[a_0, b_0]$ is of unit length. Then,

$$\rho(b_1 - a_0) = b_1 - b_2$$

Because $b_1 - a_0 = 1 - \rho$ and $b_1 - b_2 = 1 - 2\rho$
 $\rho(1 - \rho) = 1 - 2\rho$
 $\rho^2 - 3\rho + 1 = 0 \implies \rho_1 = \frac{3 + \sqrt{5}}{2} \qquad \rho_2 = \frac{3 - \sqrt{5}}{2}$

Because we require $\rho < \frac{1}{2}$, we take $\rho = \frac{3-\sqrt{5}}{2} \approx 0.382$ Observe that

$$1 - \rho = \frac{\sqrt{5} - 1}{2} \quad \Longrightarrow \quad \frac{\rho}{1 - \rho} = \frac{3 - \sqrt{5}}{\sqrt{5} - 1} = \frac{\sqrt{5} - 1}{2} = \frac{1 - \rho}{1}$$

Dividing a range in the ratio of ρ to $1 - \rho$ has the effect that the ratio of the shorter segment to the longer equals to the ratio of the longer to the sum of the two. This rule is called *golden section*.

Golden Section Search

 The uncertainty range is reduced by the ratio 1 − ρ ≈ 0.61803 at every stage. Hence, N steps of reduction using the golden section method reduces the range by the factor (1 − ρ)^N ≈ (0.61803)^N

- Use the golden section search to find the value of x that minimizes f(x) = x⁴ 14x³ + 60x² 70x in the range [0,2]. Locate this value of x to within a range of 0.3.
- After *N* stage the range [0,2] is reduced by $(0.61803)^N$. So we choose *N* so that $(0.61803)^N \le 0.3/2$. *N*=4 will do.
- Iteration 1. We evaluate f at two intermediate points a_1 and b_1 . We have $a_1 = a_0 + \rho(b_0 - a_0) = 0.7639$ $\rho = \frac{3-\sqrt{5}}{2}$ $b_1 = a_0 + (1 - \rho)(b_0 - a_0) = 1.236$ $f(a_1) = -24.36$ $f(b_1) = -18.96$

 $f(a_1) < f(b_1)$, so the uncertainty interval is reduced to $[a_0, b_1] = [0, 1.236]$

 Iteration 2. We choose b₂ to coincide with a₁, and f need only be evaluated at one new point,

> $a_2 = a_0 + \rho(b_1 - a_0) = 0.4721$ $f(a_2) = -21.10$ $f(b_2) = f(a_1) = -24.36$

Now, $f(b_2) < f(a_2)$, so the uncertainty interval is reduced to $[a_2, b_1] = [0.4721, 1.236]$

- Suppose now that we are allowed to vary the value ρ from stage to stage.
- As in the golden section search, our goal is to select successive values of ρ_k, 0 ≤ ρ_k ≤ 1/2, such that only one new function evaluation is required at each stage.

 $\rho_{k+1}(1-\rho_k) = 1 - 2\rho_k$

After some manipulations, we obtain

$$\rho_{k+1} = 1 - \frac{\rho_k}{1 - \rho_k}$$

$$\rho_{k+1} = 1 - \frac{\rho_k}{1 - \rho_k}$$

Suppose that we are given a sequence \(\rho_1, \rho_2, ...\) satisfying the conditions above and we use this sequence in our search algorithm. Then, after N iterations, the uncertainty range is reduced by a factor of

 $(1-\rho_1)(1-\rho_2)\cdots(1-\rho_N)$

- What sequence ρ_1, ρ_2, \dots minimizes the reduction factor above?
- This is a constrained optimization problem

minimize
$$(1 - \rho_1)(1 - \rho_2) \cdots (1 - \rho_N)$$

subject to $\rho_{k+1} = 1 - \frac{\rho_k}{1 - \rho_k}, k = 1, ..., N - 1$
 $0 \le \rho_k \le 1/2, k = 1, ..., N$

• The *Fibonacci sequence* $F_1, F_2, F_3, ...$ is defined as follows. Let $F_{-1} = 0$ and $F_0 = 1$. Then, for $k \ge 0$

$$F_{k+1} = F_k + F_{k-1}$$

Some values of elements in the Fibonacci sequence

$$F_1$$
 F_2 F_3 F_4 F_5 F_6 F_7 F_8 12358132134

It turns out the solution to the optimization problem above is

$$\rho_{1} = 1 - \frac{F_{N}}{F_{N+1}} \\
\rho_{2} = 1 - \frac{F_{N-1}}{F_{N}} \\
\vdots \\
\rho_{k} = 1 - \frac{F_{N-k+1}}{F_{N-k+2}} \\
\vdots \\
\rho_{N} = 1 - \frac{F_{1}}{F_{2}}$$

- > The resulting algorithm is called the *Fibonacci search method*.
- In this method, the uncertainty range is reduced by the factor

$$(1 - \rho_1)(1 - \rho_2) \cdots (1 - \rho_N) = \frac{F_N}{F_{N+1}} \frac{F_{N-1}}{F_N} \cdots \frac{F_1}{F_2} = \frac{F_1}{F_{N+1}} = \frac{1}{F_{N+1}}$$

- The reduction factor is less than that of the golden section method.
- > There is an anomaly in the final iteration, because

$$\rho_N = 1 - \tfrac{F_1}{F_2} = \tfrac{1}{2}$$

Recall that we need two intermediate points at each stage, one comes from a previous iteration and another is a new evaluation point. However, with ρ_N = ¹/₂, the two intermediate points coincide in the middle of the uncertainty interval, and thus we cannot further reduce the uncertainty range.

- To get around this problem, we perform the new evaluation for the last iteration using $\rho_N = \frac{1}{2} - \epsilon$, where ϵ is a small number.
- The new evaluation point is just to the left or right of the midpoint of the uncertainty interval.
- As a result of the modification, the reduction in the uncertainty range at the last iteration may be either

$$1 - \rho_N = \frac{1}{2}$$

or

$$1 - (\rho_N - \epsilon) = \frac{1}{2} + \epsilon = \frac{1+2\epsilon}{2}$$

depending on which of the two points has the smaller objective function value. Therefore, in the worst case, the reduction $1+2\epsilon$ factor in the uncertainty range for the Fibonacci method is

 F_{N+1}

- Consider the function f(x) = x⁴ 14x³ + 60x² 70x. Use the Fibonacci search method to find the value of x that minimizes f over the range [0,2]. Locate this value of x to within the range 0.3.
- After *N* steps the range is reduced by $(1 + 2\epsilon)/F_{N+1}$ in the worst case. We need to choose *N* such that

$$\frac{1+2\epsilon}{F_{N+1}} \le \frac{\text{final range}}{\text{initial range}} = 0.3/2 = 0.15$$

- Thus, we need $F_{N+1} \ge \frac{1+2\epsilon}{0.15}$
- If we choose $\epsilon \leq 0.1$, then *N*=4 will do.

• Iteration 1. We start with

$$1 - \rho_1 = \frac{F_4}{F_5} = \frac{5}{8}$$

We then compute

$$a_{1} = a_{0} + \rho_{1}(b_{0} - a_{0}) = \frac{3}{4}$$

$$b_{1} = a_{0} + (1 - \rho_{1})(b_{0} - a_{0}) = \frac{5}{4}$$

$$f(a_{1}) = -24.34$$

$$f(b_{1}) = -18.65$$

$$f(a_{1}) < f(b_{1})$$

• The range is reduced to $[a_0, b_1] = [0, \frac{5}{4}]$

• Iteration 2. We have

$$1 - \rho_2 = \frac{F_3}{F_4} = \frac{3}{5}$$

$$a_2 = a_0 + \rho_2(b_1 - a_0) = \frac{1}{2}$$

$$b_2 = a_1 = \frac{3}{4}$$

$$f(a_2) = -21.69$$

$$f(b_2) = f(a_1) = -24.34$$

$$f(a_2) > f(b_2)$$

so the range is reduced to $[a_2, b_1] = [\frac{1}{2}, \frac{5}{4}]$

f(

• Iteration 3. We compute

$$1 - \rho_3 = \frac{F_2}{F_3} = \frac{2}{3}$$

$$a_3 = b_2 = \frac{3}{4}$$

$$b_3 = a_2 + (1 - \rho_3)(b_1 - a_2) = 1$$

$$f(a_3) = f(b_2) = -24.34$$

$$f(b_3) = -23$$

$$f(a_3) < f(b_3)$$

The range is reduced to $[a_2, b_3] = [\frac{1}{2}, 1]$

• Iteration 4. We choose $\epsilon = 0.05$. We have

$$1 - \rho_4 = \frac{F_1}{F_2} = \frac{1}{2}$$

$$a_4 = a_2 + (\rho_4 - \epsilon)(b_3 - a_2) = 0.725$$

$$b_4 = a_3 = \frac{3}{4}$$

$$f(a_4) = -24.27$$

$$f(b_4) = f(a_3) = -24.34$$

$$f(a_4) > f(b_4)$$

The range is reduced to $[a_4, b_3] = [0.725, 1]$

• Note that $b_3 - a_4 = 0.275 < 0.3$

Newton's Method

- In the problem of minimizing a function f of a single variable x
- Assume that at each measurement point $x^{(k)}$ we can calculate $f(x^{(k)}), f'(x^{(k)})$, and $f''(x^{(k)})$.
- We can fit a quadratic function through $x^{(k)}$ that matches its first and second derivatives with that of the function f.

$$q(x) = f(x^{(k)}) + f'(x^{(k)})(x - x^{(k)}) + \frac{1}{2}f''(x^{(k)})(x - x^{(k)})^2$$

- Note that $q(x^{(k)}) = f(x^{(k)})$, $q'(x^{(k)}) = f'(x^{(k)})$, and $q''(x^{(k)}) = f''(x^{(k)})$
- Instead of minimizing f, we minimize its approximation q.
 The first order necessary condition for a minimizer of q yields

$$0 = q'(x) = f'(x^{(k)}) + f''(x^{(k)})(x - x^{(k)})$$

setting $x = x^{(k+1)}$, we obtain

$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{f''(x^{(k)})}$$

- Using Newton's method, find the minimizer of f(x) = ¹/₂x² sin x The initial value is x⁽⁰⁾ = 0.5. The required accuracy is ε = 10⁻⁵ in the sense that we stop when |x^(k+1) - x^(k)| < ε
- We compute $f'(x) = x \cos x$ $f''(x) = 1 + \sin x$
- Hence, $x^{(1)} = 0.5 - \frac{0.5 - \cos 0.5}{1 + \sin 0.5} = 0.5 - \frac{-0.3775}{1.470} = 0.7552$
- Proceeding in a similar manner, we obtain

$$\begin{aligned} x^{(2)} &= x^{(1)} - \frac{f'(x^{(1)})}{f''(x^{(1)})} = x^{(1)} - \frac{0.02710}{1.685} = 0.7391 \\ x^{(3)} &= x^{(2)} - \frac{f'(x^{(2)})}{f''(x^{(2)})} = x^{(2)} - \frac{9.461 \times 10^{-5}}{1.673} = 0.7390 \\ x^{(4)} &= x^{(3)} - \frac{f'(x^{(3)})}{f''(x^{(3)})} = x^{(3)} - \frac{1.17 \times 10^{-9}}{1.673} = 0.7390 \quad |x^{(4)} - x^{(3)}| < \epsilon = 10^{-5} \\ f'(x^{(4)}) &= -8.6 \times 10^{-6} \approx 0 \qquad f''(x^{(4)}) = 1.763 > 0 \\ \text{We can assume that } x^* \approx x^{(4)} \text{ is a strict minimizer} \\ \end{array}$$

Newton's Method

- Newton's method works well if f"(x) > 0 everywhere.
 However, if f"(x) < 0 for some x , Newton's method may fail to converge to the minimizer.
- Newton's method can also be viewed as a way to drive the first derivative of f to zero. If we set g(x) = f'(x), then we obtain

$$x^{(k+1)} = x^{(k)} - \frac{g(x^{(k)})}{g'(x^{(k)})}$$

- We apply Newton's method to improve a first approximation, $x^{(0)} = 12$, to the root of the equation $g(x) = x^3 - 12.2x^2 + 7.45x + 42 = 0$
- We have $g'(x) = 3x^2 24.4x + 7.45$
- Performing two iterations yields

$$x^{(1)} = 12 - \frac{102.6}{146.65} = 11.33$$
$$x^{(2)} = 11.33 - \frac{14.73}{116.11} = 11.21$$

Newton's Method

- Newton's method for solving equations of the form g(x) = 0 is also referred to as *Newton's method of tangents*.
- If we draw a tangent to g(x) at the given point x^(k), then the tangent line intersects the x-axis at the point x^(k+1), which we expect to be closer to the root x* of g(x) = 0.

Newton's Method

- Newton's method of tangents may fail if the first approximation to the root is such that the ratio g(x⁽⁰⁾)/g'(x⁽⁰⁾) is not small enough.
- > Thus, an initial approximation to the root is very important.

Secant Method

▶ Newton's method for minimizing *f* uses second derivatives of *f*

$$x^{(k+1)} = x^{(k)} - \frac{f'(x^{(k)})}{f''(x^{(k)})}$$

If the second derivative is not available, we may attempt to approximate it using first derivative information. We may approximate f''(x^(k)) with

$$f''(x^{(k)}) = \frac{f'(x^{(k)}) - f'(x^{(k-1)})}{x^{(k)} - x^{(k-1)}}$$

• Using the foregoing approximation of the second derivative, we obtain the algorithm

$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f'(x^{(k)}) - f'(x^{(k-1)})}f'(x^{(k)})$$

called the *secant method*.

Secant Method

$$x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{f'(x^{(k)}) - f'(x^{(k-1)})}f'(x^{(k)})$$

Note that the algorithm requires two initial points to start it, which we denote x⁽⁻¹⁾ and x⁽⁰⁾. The secant algorithm can be represented in the following equivalent form:

$$x^{(k+1)} = \frac{f'(x^{(k)})x^{(k-1)} - f'(x^{(k-1)})x^{(k)}}{f'(x^{(k)}) - f'(x^{(k-1)})}$$

- Like Newton's method, the secant method does not directly involve values of f(x^(k)). Instead, it tries to drive the derivative f' to zero.
- In fact, as we did for Newton's method, we can interpret the secant method as an algorithm for solving equations of the form g(x) = 0.

$$g(x)=f^\prime(x)$$

Secant Method

• The secant algorithm for finding a root of the equation g(x) = 0takes the form $x^{(k+1)} = x^{(k)} - \frac{x^{(k)} - x^{(k-1)}}{g(x^{(k)}) - g(x^{(k-1)})}g(x^{(k)})$ or equivalently, $q(x^{(k)})x^{(k-1)} - q(x^{(k-1)})x^{(k)}$

$$x^{(k+1)} = \frac{g(x^{(k)})x^{(k-1)} - g(x^{(k-1)})x^{(k-1)}}{g(x^{(k)}) - g(x^{(k-1)})}$$

In this figure, unlike Newton's method, the secant method uses the "secant" between the g(x) (k-1)th and k th points to determine the (k+1)th point.

- We apply the secant method to find the root of the equation $g(x) = x^3 12.2x^2 + 7.45x + 42 = 0$
- We perform two iterations, with starting points $x^{(-1)} = 13$ and $x^{(0)} = 12$. We obtain

$$x^{(1)} = 11.40$$

 $x^{(2)} = 11.25$

- Suppose that the voltage across a resistor in a circuit decays according to the model V(t) = e^{-Rt}, where V(t) is the voltage at time t and R is the resistance value.
- Given measurements $V_1, ..., V_n$ of the voltage at times $t_1, ..., t_n$, respectively, we wish to find the best estimate of R. By the best estimate we mean the value of R that minimizes the total squared error between the measured voltages and the voltages predicted by the model.
- We derive an algorithm to find the best estimate of *R* using the secant method. The objective function is

$$f(R) = \sum_{i=1}^{n} (V_i - e^{-Rt_i})^2$$

Example $f(R) = \sum_{i=1}^{n} (V_i - e^{-Rt_i})^2$

• Hence, we have

$$f'(R) = 2\sum_{i=1}^{n} (V_i - e^{-Rt_i})e^{-Rt_i}t_i$$

• The secant algorithm for the problem is

$$R_{k+1} = R_k - \frac{R_k - R_{k-1}}{\sum_{i=1}^n (V_i - e^{-R_k t_i}) e^{-R_k t_i} t_i - (V_i - e^{-R_{k-1} t_i}) e^{-R_{k-1} t_i} t_i}$$

 $\times \sum_{i=1}^n (V_i - e^{-R_k t_i}) e^{-R_k t_i} t_i$

Remarks on Line Search Methods

- Iterative algorithms for solving such optimization problems involve a *line search* at every iteration.
- Let f : Rⁿ → R be a function that we wish to minimize. Iterative algorithms for finding a minimizer of f are of the form

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}$$

where $\mathbf{x}^{(0)}$ is a given initial point and $\alpha_k \ge 0$ is chosen to minimized $\phi_k(\alpha) = f(\mathbf{x}^{(k)} + \alpha \mathbf{d}^{(k)})$. The vector $\mathbf{d}^{(k)}$ is called the *search direction*.

Remarks on Line Search Methods

- Note that choice of α_k involves a one-dimensional minimization. This choice ensures that under appropriate conditions, f(x^(k+1)) < f(x^(k)).
- We may, for example, use the secant method to find α_k. In this case, we need the derivative of φ_k

 $\phi'_k(\alpha) = \boldsymbol{d}^{(k)T} \bigtriangledown f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)})$

This is obtained by the chain rule. Therefore, applying the secant method for the line search requires the gradient ⊽f, the initial search point x^(k), and the search direction d^(k)

Remarks on Line Search Methods

- Line search algorithms used in practice are much more involved than the one-dimensional search methods.
 - Determining the value of α_k that exactly minimizes ϕ_k may be computationally demanding; even worse, the minimizer of ϕ_k may not even exist.
 - Practical experience suggests that it is better to allocate more computation time on iterating the optimization algorithm rather than performing exact line searches.

Homework

- Exercises 6.8, 6.12, 6.16
- Exercises 7.2(d), 7.10(b)
- Hand over your homework at the class of Mar. 26.