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Golden Section Search

4

Determine the minimizer of a function ?r — R over a closed
Interval, saya,, by . The only assumption is that the objective
function isunimodal, which means that it has only one local
minimizer.

The method is based on evaluating the objective function at
different points in the interval. We choose these points in such
a way that an approximation to the minimizer may be achieved
In as few evaluations as possible.

Narrow the range progressively until the minimizer is “boxed

In” with sufficient accuracy. A0
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» We have to evaluafe at two intermediate points. We choose

the intermediate points in such a way that the reduction in the
range is symmetric.
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» If f(a) < f(b1) , then the minimizer must lie in the rajge,’
» If f(a1) > f(b1) , then the minimizer is located in the rangg




Golden Section Search

» We would like to minimize the number of objective function
evaluations.

» SUpPpPOSEf(a;) < f(b;) . Then, we know that [ag, b; . Because
a1 IS already Iin the uncertainty interval and,) IS already
known, we can make, coincide with . Thus, only one new
evaluation off at, would be necessary.
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» Without loss of generality, imagine that the original rajage,
IS of unit length. Then,
p(by — ag) = by — bs
Because, —a,=1—p abgd-b,=1-2p
p(l—p)=1-=2p

p2—3p+1:0 — ,01:3+25 /0223_2
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Because we require<i , we take 57 ~ 0.382
Observe that

1—p=¥-1 m) ﬁz%ﬁz@‘lzlf
Dividing a range inthe ratioof to—, has the effect that the
ratio of the shorter segment to the longer equals to the ratio of
the longer to the sum of the two. This rule is catjelitlen
section




Golden Section Search

» The uncertainty range is reduced by the ratig, ~ 0.61503
at every stage. Hencld,steps of reduction using the golden
section method reduces the range by the factor
(1—p)V ~ (0.61803)"
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» Use the golden section search to find the value of that
minimizes f(z) = 2* — 142% + 602> — 70z In the range [0,2].
Locate this value of to within a range of 0.3.

» After N stage the range [0,2] is reduceddy1803)" . S0 we
chooseN so that(0.61803)" < 0.3/2 N=4 will do.

» Iteration 1. We evaluatg at two intermediate paints »and

We have a1 = ag + p(by — ag) = 0.7639 . 3_T\@
b1 = ag+ (1 — p)(by — ag) = 1.236
flay) = —24.36
f(by) = —18.96

fla1) < f(b1), so the uncertainty interval is reducedato,| = [0, 1.236]
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» Iteration 2. We choose to coincide with , @and need only
be evaluated at one new point,

as = ag + p(by — ag) = 0.4721
flag) = —21.10
f(ba) = flar) = —24.36
Now, f(b) < f(as) , SO the uncertainty interval is reduced to
ay, by] = [0.4721,1.236
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» Iteration 3. We set; = b, and compute  w=b b
bs = ay + (1 — p)(bl — a2) = (0.9443 .

Wehave gy =y =—2136 el el

Yol
o

f(bs) = —23.59 R
s

So f(b3) > flaz) . Hence, the uncertainty o, 5, —a,
Interval is further reduced ta,, b;] = [0.4721, 0.9443]

» Iteration 4. We sett, = a3  ang= a, + p(bs — ay) = 0.6525
We have flag) = —23.84

f(bs) = flag) = —24.36
flay) > f(by). Thus, the value of that minimizes is located in

the intervalay, b3] = [0.6525,0.9443] . Note that o, = 0.292 < 0.3




Fibonacci Search

» Suppose now that we are allowed to vary the value from
stage to stage.

» As In the golden section search, our goal is to select successive
values ofor ) < pr. <1/2 , such that only one new function
evaluation is required at each stage.

pri(l —pr) =1—2p;
After some manipulations, we obtain

Pk
Pry1 =1 —
1 —pr
’
et -
I I
P v iR i e
|
Iteration k ! ; } ;
: ay by
1 | ]
! 1 Pyt (10 )
lteration k+1 F —t |
10 : 341 Diyt .
s 3|

1-py



Fibonacci Search Pre1=1=37>

» Suppose that we are given a sequengs, ... satisfying the
conditions above and we use this sequence in our search
algorithm. Then, afteN iterations, the uncertainty range is
reduced by a factor of

(1= p1)(1—p2)-- (1= pn)
» What sequence;, p»,...  minimizes the reduction factor above?
» This Is a constrained optimization problem

minimize (1 — py)(1 — p2)--- (1 — pn)
subject to ppr1 =1 — 1f—’;k, k=1,...,.N —1
0<p<1/2,k=1,...N
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Fibonaccl Search

» TheFibonacci sequencer,, i, F;, ... IS defined as follows. Let
F,=0andF,=1 . Then, for>o0
Fry1 =ty + Fr
» Some values of elements in the Fibonacci sequence

F B F3 Fy F5  Fg F7 Fy
1 2 3 5 8 13 21 34
» It turns out the solution to the optimization problem above is
pr=1- F]jv]il
Fy_1

P2 — L — Fr

P : L= FNn k12
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Fibonaccl Search

» The resulting algorithm is called tlik#bonacci search method
» In this method, the uncertainty range is reduced by the factor
(T=p)(L=po)-- (L= py) = A5t B = A= L
» The reduction factor is less than that of the golden section
method.
» There is an anomaly in the final iteration, because

_1_H _1
pN_l F 2

» Recall that we need two intermediate points at each stage, one
comes from a previous iteration and another is a new
evaluation point. However, withv =3, the two intermediate
points coincide in the middle of the uncertainty interval, and
thus we cannot further reduce the uncertainty range.
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Fibonaccl Search

» To get around this problem, we perform the new evaluation for
the last iteration usingy =5 —¢ , where is a small number.

» The new evaluation point is just to the left or right of the
midpoint of the uncertainty interval.

» As a result of the modification, the reduction in the uncertainty
range at the last iteration may be either

or 1

depending on which of the two points has the smaller objective
function value. Therefore, in the worst case, the reduction

factor in the uncertainty range for the Fibonacci methoeH&F+ o
N+1
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Example

» Consider the functiofnz) = 2! — 1423 + 6022 — 702 . Use the
Fibonacci search method to find the value of that minintizes
over the range [0,2]. Locate this value:of to within the range
0.3.

» After N steps the range is reduced by 2¢)/Fy . In the worst

case. We need to chodsesuch that
1 4 2e - final range

=0.3/2=0.15
Fyq1 7 initial range /

1+2¢
» Thus, we needy., > ==

» If we choose: < 0.1 , théxw=4 will do.
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» lteration 1. We start with
1—p =fa 5
P1 F5 8
We then compute

a; = ag+ p1(by — ap) = %
by = ag + (1 — p1)(by — ag) = 3
flag) = —24.34
f(by) = —18.65
flar) < f(b)
» The range is reduced {a@, b:] = [0, 3]
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Example

» lteration 2. We have

bg = a1 = %
f(ag) = —21.69
fba) = flay) = —24.34
flaz) > f(b2)

so the range is reduced ta, b)) = [, 9]
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Example

» Iteration 3. We compute

Y
1_P3—ﬁ—§
3
agzbgzz

b3:a2+(1—p3)(bl—a2) =1

flas) = f(by) = —24.34
f(b3) = —23
flas) < f(bs)

The range is reduced i@, b3] = [, 1]
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» lteration 4. We choose=0.05 . We have

Y |
L=pi=F =3

a4 = a9 + (,04 — 6)([)3 — CLQ) = 0.725

b4 — a3 = %
f(a4) = —24.27
f(bs) = flag) = —24.34
flas) > f(bs)

The range is reduced Q. b3] = [0.725, 1]
Note thaty; — a, = 0.275 < 0.3

v
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Newton’s Method

» In the problem of minimizing a functiogh of a single variable
» Assume that at each measurement pgint we can calculate
fa®) f®) | and”(z™)
» We can fit a quadratic function through that matches its first
and second derivatives with that of the function
q(z) = f(@W) + faW)(z — 2W) + 5" (2W) (@ — 2M))?
» Note thatg(z®) = fz®) ¢(z®) = f'(2®) Cafnd™) = (2"
» Instead of minimizing , we minimize its approximatipn
The first order necessary condition for a minimizer of yields
0=q(x) = f@®) + @)z - 20,
settingy = z(**1 , we obtain

1) — (k) _ f'(=M)
f"(@™)

2l
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Example

» Using Newton’s method, find the minimizer éfz) = 1z? — sinz
The initial value isz(” = 0.5 . The required accuracy=si0—?
in the sense that we stop whegfr) — (] < ¢

» We computef'(z) =2 —cosz  f"(z) =1 +sinx

» Hence, 0.5—cos0.5 —0.3775

1) = 0.5 — , = 0.5 — = (.7552
1 4+smn0.5 1.479

» Proceeding in a similar manner, we obtain
33(2) _ x(l) L f/(x(l)) _ Qf(l) _0.02710 _ 0.7391

FrzD) 1.635
2 = 32 — LU} — 42) 946100 _ ) 739
1) = 0 — L) — @ LI _ 7300 |20) — ()] < e = 102
fllaW)=-86x10%~0  f(2W)=1.763 >0
We can assum?/that ~ 14 iS a strict minimizer

21
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Newton’s Method

» Newton’s method works well if”(z) >0  everywhere.
However, If f(x) <0 for some , Newton’s method may fall
to converge to the minimizer.

» Newton’s method can also be viewed as a way to drive the first
derivative off to zero. If we setz) = f/(z) , then we obtain

L) 0 9@
g'(z)
f.q
fhay f(x) >0 A f(x) <0
q(x) '
N )
i B
! N
: N |
i L - | L -

x(K) x{k+1) X xl(k+1) (k) x* X



Example

» We apply Newton’s method to improve a first approximation,
z) =12, to the root of the equatiafiz) = 2 — 12.22% + 745z + 42 = 0

» We havey/(x) = 32% — 24.42 + 7.45

» Performing two iterations yields

1) _ 102.6 __
p) =12 — 1020 — 17 33

2) _ 14.73 __
2@ =11.33 - B8 =11.21

1
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Newton’s Method

» Newton’s method for solving equations of the foyim) = 0 IS
also referred to ddewton’s method of tangents
» If we draw a tangenttg(z)  at the given paiht , then the

tangent line intersects theaxis at the point**1. |, which we
expect to be closer to the rapt  ¢0f) =0

» Note that the slope of(x) dt' is

g(x)
/(x(k; ) _ g(x(k)> A
g - (F) — (k1)
(k)
k+1) _ . (k 9(35 )
= ) = ) 7 () L
g(x(k+1))
\ x
24 (k+2) x(k+1)  x(K) X




Newton’s Method

» Newton’s method of tangents may fail if the first
approximation to the root is such that the ratio”)/¢' (V)

IS not small enough.
» Thus, an initial approximation to the root is very important.

g0}

-
X
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Secant Method

» Newton’s method for minimizing uses second derivatives of
k) ™)

2 =2 ~ g,
» If the second derivative is not available, we may attempt to
approximate it using first derivative information. We may

approximater”(z(¥))  with
oy J@®) = fa™Y)
@) = =G
[l [l x -— x [l [ [l
» Using the foregoing approximation of the second derivative ,

we obtain the algorithm

(k) _ p(k=1)
o) — o) T (k)

fra®)) — f(zk=D) /
called thesecant method

k1)
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Secant Method fi(z®) — f/ (kD)

4

(k) _ p(k=1)
eyt (k)

J

kt1)

i

Note that the algorithm requires two initial points to start it,
which we denote-!) and” . The secant algorithm can be
represented in the following equivalent form:

(ha1) _ FaN k=D — (k=) (k)

fl(x®) — f(ak=D)
Like Newton’s method, the secant method does not directly
involve values of (z\¥)) . Instead, it tries to drive the derivative
f' to zero.

In fact, as we did for Newton’s method, we can interpret the
secant method as an algorithm for solving equations of the
formg(z) =0 .

X
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Secant Method

» The secant algorithm for finding a root of the equatian= 0

takes the formx<k+1) o ey o(z®
g(z®)) — g(z(+=1)) ’
g(aj(k)>x(k_l> — g(x(k_l))x(k)
g(x®)) — g(xE=)

» In this figure, unlike Newton’s method, the secant method uses
the “secant” between the 909
(k —1)th andk th points to

determine thek + 10 th point. [~-====-===========------

or equivalently,

(k+1)

s i . — - ———— —

2 ] x* xk+2) x(k+1) x(k)  x(k-1) X




Example

» We apply the secant method to find the root of the equation
glz) = a° — 12.20° + 7452 + 42 = (

» We perform two iterations, with starting pointst) = 13 and
7" = 12. We obtain

20 = 11.40
22 = 11.25
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Example

4

Suppose that the voltage across a resistor in a circuit decays
according to the model(t) = e, where IS the voltage at
time + andr Is the resistance value.

Given measurements. ...V, of the voltage at times:, ,
respectively, we wish to find the best estimata of . By the best
estimate we mean the valuerof that minimizes the total
squared error between the measured voltages and the voltages
predicted by the model.

We derive an algorithm to find the best estimate of using the
secant method. The objective function is

f(R) =320 (Vi — e7f)?

30



Example FIR) = S0 (Vi — e~

1=1

» Hence, we have
fI(R) =230 (Vi — e ettt

» The secant algorithm for the problem is

Ry — Ry

Ri. — Ri—
T ST (Vi — e Pl Ridit; — (V; — e Rt e Rl
X D i (Vi— e~ fti) e~ Hiitig,
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Remarks on Line Search Methods

» Iterative algorithms for solving such optimization problems
Involve aline searchat every iteration.

» Let f: R — R be a function that we wish to minimize. Iterative
algorithms for finding a minimizer of are of the form
£+ — 20 4 o, d®
where z¥ is a given initial point ang > 0 IS chosen to
minimized ¢;(a) = f(z® + ad®) . The vead®r s called the
search direction

1
I

32 (k) /d(k) : x(k'I'l) — x(
1



Remarks on Line Search Methods

4

Note that choice of, involves a one-dimensional
minimization. This choice ensures that under appropriate
conditions, f(z**1)) < f(x®*)
We may, for example, use the secant method todind . In this
case, we need the derivative Hf

¢ () = dPT 7 fa) + ad™V)

This is obtained by the chain rule. Therefore, applying the
secant method for the line search requires the gradient , the
initial search point:® , and the search direcgion

33



Remarks on Line Search Methods

» Line search algorithms used in practice are much more
iInvolved than the one-dimensional search methods.

34

Determining the value of;,  that exactly miniesz;, may be
computationally demanding; even worse, the minimi£ep;, may
not even exist.

Practical experience suggests that it is bettaflé@ate more
computation time on iterating the optimization altfon rather than
performing exact line searches.



Homework

» Exercises 6.8, 6.12, 6.16
» Exercises 7.2(d), 7.10(b)

» Hand over your homework at the class of Mar. 26.
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